Çankaya University – ECE Department – ECE 474

2012 Spring Term 08.05.2012

Experiment: Investigation of Gaussian beam size and radius of curvature in propagation

Experiment coded in MATLAB is given on course webpage, ece474.cankaya.edu.tr. with file names of Beamsize.m and Focusingpram.m

- 1. Download the experiment files into your computer.
- 2. Run the file, observe the OPs. Try to follow what is intended and what is happening
- 3. Beamsize.m is intended to show you the variation of Gaussian beam size (α_r) in Focusingpram.m is intended to show you the variation of Gaussian beam focusing parameter (F_r) , also called as radius of curvature against propagation distance (z), source size (α_s) , focusing parameter on source plane (F_s) and wavelength of operation (λ) . The definition of α_r is based on (G24) of Notes on free space propagation for ECE 474_Nisan 2012 and the definition of F_r is based on (G28) of the same notes.
- 4. Run both Beamsize.m and Focusingpram.m within a range of $z=0 \rightarrow 5$ km at $\alpha_s=1$ cm, 2 cm, 5 cm, 10 cm, $F_s=1$ km, ∞ , -1 km, $\lambda=0.85$ μ m, 1.31 μ m, 1.55 μ m, 1.7 μ m to get plots. Observe and record the plots. From these plots find and write the dependencies of α_r and F_r on z, α_s , F_s and λ .
- 5. In Beamsize.m, α_B , z_B , z_{R_1} , z_{R_2} are calculated and written out in work space. Confirm that these are in line with those measured on the plots. Additionally where appropriate calculate α_f , z_f , z_R . For this use the definitions given in Notes on free space propagation for ECE 474_Nisan 2012.
- 6. Include your general comments in the experiment report.