Çankaya University – ECE Department – ECE 474

2013 Spring Term

March 2013

Experiment 4 : Ray propagation in graded index fibres

Experiment coded in MATLAB, with file name, "Ray_tracing_GI_Exp4.m" is given on webpage of ECE 474.

- 1. Copy the experiment file into the directory of your name.
- 2. Run the file, observe the OPs, Try to follow what is intended and what is happening
- 3. This experiment is intended to illustrate the ray propagation in graded index fibre and the minimum and maximum turning points, i.e., r_min, r_max of ray trajectory. The launching conditions, are specified by parameters x0, y0, tetx0 and tety0 on line 5 of the m code (x₀, y₀, θ_{x0} and θ_{y0} in (2.18) of the Notes on Propagation in GI fibres_Feb 2013_HTE). Line 4 of the code gives the fibre specifications.
- 4. When you run the code two outputs are obtained, one is the 3D visual propagation of the given ray in the fibre, the other is the turning points, r_min and r_max. By rotating the 3D visiual propagation plot, it is possible to obtain, the projection of ray trajectory onto fibre end face (or fibre cross section).
- 5. By adjusting parameters (apart from z related ones) on line 5 of the code, see how ray trajectory is affected. From the rotated ray trajectory, find r_min and r_max by pointing data cursor to them and test if these are the same as r_min and r_max written on command window.
- 6. By selecting at least ten different sets of x0, y0, tetx0 and tety0, find the corresponding r_min and r_max both from the ray trajectory plot and from the command window and determine if they agree. Bearing in mind that meridional rays will a line type projection, where r_min = 0, the skew rays will draw an ellipse, determine which set of x0, y0, tetx0 and tety0 give meridional, and which set of x0, y0, tetx0 and tety0 give skew rays.
- 7. Record the outputs to print them in your experiment report.
- 8. Include your comments for the experiment.