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a b s t r a c t

We present a novel multi-point fiber-optic refractive index (RI) sensor based on two different length
coreless fibers spliced between single mode fibers (SMFs). The sensing probe operated based on mul-
timode interference. A multi-point interferometer with 25 mm and 30 mm coreless fiber is fabricated
and the measurement of RI is realized by measuring the wavelength shift of resonance dips in the
transmission spectrum of the multi-point interferometer. Experimental characterization for a multi-point
refractometer is presented. In the RI range of 1.3288–1.3666, the corresponding RI sensitivities are
148.60 nm/RIU and 119.27 nm/RIU for each point, respectively. We demonstrate that this multi-point
fiber optic interferometer can be used as a simple transducer for RI sensing with comparable sensitivity.

& 2015 Published by Elsevier B.V.
1. Introduction

Multimode interference (MMI) has been thoroughly in-
vestigated as an attractive technology for optical communication
and sensing [1]. Meanwhile, an increasing number of all-fiber
multimode interferometer have been used for sensing applica-
tions, including temperature, strain, pressure, refractive index, and
curvature sensing [2–14]. Typically, an all-fiber MMI is consist by a
step-index multimode fiber (MMF) spliced between two single-
mode fibers (SMF), forming a single mode–multimode–single
mode (SMS) structure [3,8]. When the core mode of the lead-in
SMF enters the MMF section, several high-order modes are excited
and propagated along the fiber, at the other splicing point, the
high-order modes are coupled back to the core mode of the lead-
out SMF where interference occurs among the cladding modes.
Recently, a fiber tip sensor for liquid level measurement is re-
ported [14]. The sensing structure is constitute by a 125 mm dia-
meter coreless-MMF section spliced to an SMF, and the MMF tip is
coated with a 200 nm gold layer acting as mirror, so that the self-
image is reflected and coupled back into the SMF. Therefore, when
the length of coreless MMF immersed in a liquid changed, a cor-
related shift of the wavelength peak is observed. Moreover, an-
other SMS fiber-based refractometer based on the self-imaging is
proposed [7]. A core-etched MMF with different diameters is used
to attempt to investigate diameter influence on the sensitivity to
RI measurement. In the RI range from 1.345 to 1.43, experimen-
tally, SMS fiber-based refractometers with 50, 80, and 105 mm core
diameters are analyzed; numerical results have shown that the
.

sensitivity to external RI increased with the MMF core diameter
decreasing. Meanwhile, fiber optic structures based on multimode
interference are also investigated to RI sensing [15,16]. The pro-
posed device is a SMS structure, where the multimode fiber is a
coreless fiber, and the numerical analyses are carried out by beam
propagation and modal expansion methods. Finally, they present
and demonstrate a SMS multimode interference structure based
on standard single mode fiber and multimode coreless fiber ver-
ified the built with.

In this paper, we present and demonstrate a novel multi-point
fiber-optic RI sensor based on multimode interference. Each point
consists of a section of coreless fiber with a selected length. Ex-
perimental results show that the sensor has high RI sensitivity and
the wavelength shift of the resonance peaks as a linear function of
RI. The resonance wavelengths of the points shifted towards the
longer wavelength while the RI increases. Compared with other
aforementioned fiber refractometers, the fabrication of this multi-
point fiber optic interferometer is simple and cost-effective, this
multi-point sensor also can applicable to on-line detection in any
environment containing multiple targets as well as for some
measurement processes that required self-inspection.
2. Experiments and discusses

Fig. 1 illustrates the multi-point fiber optical sensor system by
using coreless-fiber. Fig. 1(a) is a cross-section profile of the
coreless fiber and SMF, the coreless fiber is made up of silica with a
refractive index as 1.440, a lay of polyimide coating is used as its'
buffer. The schematic of experimental setup is shown in Fig. 1(b), a
broadband source (BBS) in the 1550 nm spectral range with a
bandwidth of 200 nm and an OSA (AQ6370, Yokogawa) are used to
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Fig. 1. Schematics of coreless-fiber based multi-point sensor system. (a) Cross-section profile of the coreless fiber and SMF; (b) sensing system experimental setup; insert is
the dual-channel refractometer structure built with different lengths coreless fiber of 25 mm and 30 mm.

Fig. 2. The transmission spectra of sensors with different coreless fiber lengths; the
inset multimode interference structure are built with standard single mode fibers
and coreless fibers.
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measure the spectrum. The light from the light source transmits
through single mode fiber into the sensing area where a multi-
mode interference occurs, and then along the single mode optical
fiber, the light signal is transmitted to the spectrometer for signal
collection and analysis. The sensing area includes two coreless
optical fibers with different lengths as 25 mm and 30 mm sepa-
rately, which is shown in Fig. 1(b).

Firstly, we fabricate and test 20 mm, 25 mm, and 30 mm length
sensors for RI measurement at room temperature (25 °C) using the
experimental setup as shown in Fig. 1(b). During the test, all fibers
are aligned along the same axis and possessed a circular cross
section and the sensor is kept straight with the help of two fiber
holders. Sodium chloride solutions of different concentrations in
deionized water are used as samples with different RIs. The solu-
tion's RI is measured by an Abbe refractometer with a 1.3288–
1.3666 RI range. Before each measurement, we clean the sensor by
deionized water and dried in air. In our experiment the sensor is
totally immersed into the sample which is injected by a pipette.

The transmission spectra of sensors with different coreless fiber
lengths of 20 mm, 25 mm and 30 mm is shown in Fig. 2. It can be
seen that the transmission spectra are different for different
coreless fiber length and each curve at least has two obvious
notches. Moreover, as the coreless fiber length increasing, the
wavelengths of the dips will drift. The experimental results show
that lengths of coreless fiber have effect on multimode inter-
ference just as the coreless fiber with different radius make mul-
timode interference changed [15,16].

For RI measurement, the sensors with different coreless fiber
lengths are further tested, respectively. Fig. 3 shows the trans-
mission spectra of three sensors with two notches response to RI.
Two spectral dips shift to longer wavelength as the RI of the ex-
ternal sample increase. The external RI affects the effective RI of
different modes in the coreless fiber differently. From the data, we
know there are more than two digs in sensors of different lengths,
and each dig can be used as measuring point. In the measuring
process, the data of these two digs can be collected to prove the
validity of the results, one of them can be used as a stability ca-
libration point for the other dip, which monitoring their respective
changes, and reflecting the testing correctness. The spectral shifts
as a function of external RI for both spectral notches as well as
their linear fitting are shown in Fig. 3(a), (b) and (c). The corre-
sponding RI sensitivities are 113.41 nm/RIU, 140.88 nm/RIU and
125.15 nm/RIU for three sensors, respectively.

Based on the analysis of different lengths coreless optical fiber
refractometer graph, the sensors of different length sensing area
have different reaction locations, and the dip position will move to
the long wavelength with the length of the sensing area increase.
To use the light path effectively, this dual-point sensor is not made
of two single point sensors directly. Three single mode optical fi-
bers and two coreless optical fibers with the length of 25 mm and
30 mm are selected to joint for one sensor, get a dual-point
refractometer. In the same way, we put it at the experimental
setup as shown in Fig. 1(b) and have RI measurement. Figs. 4 and 5
illustrate the RI test results of the sensor which has two dips
corresponding two points in the transmission spectrum. Fig. 4
shows the wavelength and spectral responses of point 1 with the
coreless fiber length of 25 mm to different RI values, while the
wavelength and spectral responses of another point 2 with the
coreless fiber length of 30 mm is shown in Fig. 5.

Figs. 4(a) and 5(a) show that the dual-point sensor has two
obvious dips. In the experiment of Fig. 4, we make the point 2 in
aqueous solution all the time, but make the point 1 under test of
refractive index changing from 1.3288 to 1.3593. Fig. 4(a) is the
transmission spectra with two dips response to RI. Fig. 4(b) shows
that the spectral dips of point 1 shift to longer wavelength as the
RI of the external sample increase, but the point 2 has no change
within the error rang allowed. In the same way, in the experiment
of Fig. 5, we make the point 1 in aqueous solution all the time, but
make the point 2 under test of refractive index changes from
1.3288 to 1.3593. Fig. 5(a) shows the transmission spectra with
two notches response to RI. Fig. 5(b) shows the spectral dips of
point 2 shift to longer wavelength as the RI of the external sample
increase, but the point 1 also has no change within the error rang
allowed. We get the corresponding RI sensitivities are 148.60 nm/
RIU and 119.27 nm/RIU for each point, respectively. Experimental
results show that both points do not have influence on each other
in the process of measuring, and the refractometer can be used as
a dual-point sensor.

We used two single point sensors to construct a dual-point
sensor, and we measured them respectively and get the following
spectrum. From the spectrum, we know dip 1 is from the sensor



Fig. 3. Transmission spectra with two notches response to RI based on the proposed sensors with different coreless fiber length (a) 20 mm; (b) 25 mm; (c) 30 mm.

Fig. 4. Spectral characteristics of point 1 in RI measurement. (a) Depicts transmission spectra with two notches response to RI; (b) RI response of dual-point structure
sensors.

Fig. 5. Spectral characteristics of point 2 in RI measurement. (a) Depicts transmission spectra with two notches response to RI; (b) RI response of dual-point structure
sensors.
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Fig. 6. Transmission spectra with different coreless fiber length (a) 20 mm; (b) 25 mm; (c) 25 mm–30mm.
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with coreless fiber length of 25 mm, and dip 2 belongs to the
sensor with coreless fiber length of 30 mm. Connecting these two
sensors together, we get the dual-point sensor as we presented in
this work ( Fig. 6).
3. Conclusions

In conclusion, we proposed and demonstrated a novel multi-
point fiber optic refractometer based on modal interference in the
coreless fiber between SMFs for high sensitive RI sensing. Ex-
perimental data showed this sensor has a quadrature response
with a high sensitivity for the tested RI range from 1.3288 to
1.3666. Based on the investigation of the sensors with different
coreless fiber lengths, we made this multi-point refractometer, in
which each sensing point responses to different refractive index
solution, also they are independent of each other during the
measurement. This sensor has some advantages including minia-
turization, low cost, simple fabrication process, and robustness.
The coreless fiber could be conveniently coated with functional
materials to achieve higher sensitivity and better selectivity for
some biological or chemical parameters other than RI. This optical
coreless fiber based sensor has potentially attractive for bio-
chemical and biomedical applications.
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