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Abstract: We present a capacity estimate of fiber-optic communication systems limited by fiber nonlinearity.
The analysis reveals that a capacity of ∼5 bits/s/Hz in a single polarization for transmission over 2000 km is
possible using advanced technologies.
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1. Introduction
The information carrying capacity of a communication channel was first considered by Shannon in 1948 [1] who calculated
the capacity of a memoryless channel with additive white Gaussian noise (AWGN) for a given signal-to-noise ratio (SNR). It
was later shown by Gordon [2],[3] that amplified spontaneous emission (ASE) can be represented by AWGN fields, making
possible to use Shannon’s theory to optically amplified systems.

The application of Shannon’s theory to the optical ‘fiber channel’ faces many challenges. The most important is that
three phenomena are simultaneously at play in fibers: amplified spontaneous emission, chromatic dispersion, and the (in-
stantaneous) Kerr fiber nonlinearity (see Fig. 1a). Estimations of the ‘fiber capacity’ that include fiber nonlinearity have
relied on a variety of assumptions such as weak nonlinearity [4], low dispersion [5] or heuristic [6] and information rates [7]
approaches. In these studies, no connections are made to modulation, constellations and nonlinearity compensation.

Here, we present a method for evaluating a conservative estimate of the ‘fiber channel’ capacity by using a modula-
tion with compact spectrum, multi-level amplitude and phase modulations, high-speed pseudo-linear transmission, reverse
nonlinear propagation combined with pre-distortion at the transmitter and coherent detection. The analysis captures all in-
stantaneous fiber Kerr nonlinearities, including nonlinear signal-noise interactions. Using such advanced technologies, a
capacity lower bound estimate for a 2000-km wavelength-division multiplexing (WDM) transmission is performed.

2. Fiber Propagation
The evolution of the optical field E(z, t) in the presence of instantaneous Kerr nonlinearity in fibers is given by [8]
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= i γ(z) |E|2E + i n(z, t), (1)

where β2(z) and γ(z) are the fiber dispersion and nonlinear coefficient [8] as a function of the propagation distance in
the fiber. The stochastic term n(z, t) describes the AWGN. It is defined by its autocorrelation < n(z, t)n∗(z′, t′) >=
nsphνsα δ(z − z′, t − t′) where h is the Planck constant, δ the Dirac functional, and other parameters are defined in the
Table of Fig. 1b. Dispersion slope is neglected here as it has less impact than dispersion when operating away from the
zero-dispersion wavelength. Alternatively, dispersion slope can also be engineered to zero. Distributed amplification com-
pensating exactly for fiber loss is assumed in order to maximize the optical signal-to-noise ratio (OSNR). The delivered
OSNR is given by Ps/(2NASEBRef) where Ps is the signal power per WDM channel, BRef is the reference bandwidth enter-
ing the definition of the OSNR (12.5 GHz) and NASE is the spectral density of the noise per polarization. NASE is given by
nsphνsαL where L is the transmission length.
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Fig. 1. Propagation effects and system parameters: a) The three distributed phenomena at play for the optical fiber channel and b) Parameters of the
example system considered in this paper.
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Constellation

Figure sampling
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Fig. 2. Example of constellation and field used in this study: a) Raised cosine spectrum, b) waveform and sampling instants and c) symbols and
constellation. To ease visualization, a small alphabet of 32 symbols (full circles) over only 2 rings on a low-resolution grid (open circles) is represented.

Compensation of intra-channel nonlinearities is applied at the transmitter through reverse propagation [9] of the channel
in the absence of noise. This removes the channel memory associated with the pattern dependence of signal-signal intra-
channel nonlinearities [10]. A single state of polarization is considered in this study. For optical dispersion compensation, we
use a singly-periodic dispersion map optimized in the absence of intra-channel nonlinearity compensation. The dispersion
compensating elements are considered as low-loss linear elements. The dispersion pre-compensation is -1050 ps/nm, the
residual dispersion per span is 20 ps/nm (applied every 100 km) and the dispersion is brought to zero at the receiver. We
use such a dispersion map to minimize the impact of imperfect compensation in practical implementations of intra-channel
nonlinearities compensation. The noise co-propagates with the signal, capturing all signal-noise nonlinear interactions.
3. Modulation and Constellations
Achieving high-capacity transmission requires multi-level symbol constellations with compact spectra. The modulation
considered in this study uses Nyquist signals having ‘box-like’ spectra with a square-root raised cosine shape (in the optical
field) and a roll-off of 20% (see Fig. 2a) [11]. The optical multiplexer and demultiplexer transfer functions are identical
and match the square-root raised cosine signal spectrum. The modulation is free from inter-symbol interference (ISI) as
seen in Figs. 2b and 2c. The raised cosine roll-off is chosen to reduce the large memory in the time domain associated with
perfectly square spectrum modulation using the ‘sinc’ temporal function [11]. The constellation uses a concentric N-ring
structure in field (amplitude shift-keying, N-ASK) with equal amplitude spacing and random phase (phase shift-keying,
PSK) on a high-resolution angular grid. For each symbol, amplitude and phase are randomly chosen within the underlying
constellation, with equal population of each ring. The actual number of phase states needed in practical implementation
follows from the capacity results and the coding used.
4. Information Theory and Channel Capacity
The channel capacity for a specified channel input alphabet, when X is a random input giving rise to the random channel
output Y , is given by the relation [1, 12]

C/B =
∫∫

pY,X(y, x) log2

pY,X(y, x)
pY (y)pX(x)

dy dx

= −
∫
pY (y) log2 pY (y) dy +

∫∫
pY,X(y, x) log2 pY |X(y|x) dy dx

= H(Y )−H(Y |X) , (2)

where B is the channel spacing (see Fig. 2a), pY,X is the joint probability density function (pdf) of the received and
transmitted signals, Y and X , while pY and pX are the marginal densities [13]. The conditional pdf of Y given X is pY |X .
The functions H(Y ) and H(Y |X) are referred to as the entropy of Y and the entropy of Y conditioned on X , respectively.
For the numerical evaluation of fiber capacity, we treat the channel as a discrete memoryless channel (DMC) [1, 12, 14].
Using such a model is in part motivated by the complete removal of the memory associated with signal-signal intra-channel
nonlinearities, as described in Sec. 2. Nevertheless, using a DMC model result in a lower bound capacity estimate. The
discretized version of Eq. (2) is applied for the case of a concentric ring input alphabet by summing up the entropies on the
RHS of Eq. (2). Full knowledge of the received field, corresponding to an ideal coherent receiver, is assumed to obtain Y .
5. Capacity Results
We first evaluated the capacity of our constellation structure in the absence of fiber nonlinearities (Fig. 3a). Shannon’s
capacity, given by C = B log2(1 + SNR), is also shown for comparison. In Shannon’s equation (2), the SNR (not to be
confused with the SNR used in optical communication) is the ratio of the energy per bit Eb to the noise per bit N0 [11].
Shannon’s SNR relates to the OSNR by OSNR = S/(2 Bref) SNR, where S is the signal symbol rate and Bref is the 12.5-
GHz reference bandwidth entering the definition of the OSNR. As seen in Fig. 3a, as the SNR increases, a larger number
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Capacity results: Theory

Figure cap_theory_NL
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Fig. 3. Capacity of a linear and nonlinear system: a) Capacity as a function of SNR in the absence of fiber nonlinearity, b) Capacity as a function of SNR
for the 2000-km system considered for various number of rings. All fiber nonlinearities are included.

of rings is necessary to reach the Shannon capacity. This originates from the fact that, at high SNR, the capacity is better
maximized by filling the complex plane than adding symbols on a single or a few rings. Figure 3a can be used to determine
the gain in capacity possible by moving from a single ring, i.e. pure PSK, to multiple rings, i.e. N-ASK/PSK (N integer), at
powers below the nonlinearity threshold.

Results for nonlinear transmission in the WDM system considered are presented in Fig. 3b. We use a total of 2048
symbols, selected as described in Sec. 3. The capacity in Fig. 3b is expressed in bits/s/Hz and is obtained by dividing the
information rate, expressed in bits/symbol, of the central channel (out of the five simulated WDM channels) by the ratioB/S
(= 1.25 (s Hz)/symbol). This reduction in capacity is due to limitations in spectral packing associated to the ‘practical’ raised
cosine modulation used and is not present for square spectrum modulation. This spectral packing factor reduces the capacity
relative to Shannon (as seen at low SNRs of ∼10 dB) but follows the Shannon capacity divided by the B/S ratio (long-
dashed curve in Fig. 3b). The capacities for different numbers of rings peak around ∼20 dB SNR and reach ∼5 bits/s/Hz
for 16 rings. For this specific system, the capacity is limited by cross-phase modulation (XPM). Computation with four
different noise seeds and four different sets of random phases lead to variations in maximum capacity of ±0.3 bits/s/Hz.

6. Conclusion
We presented a general method to evaluate the fundamental capacity of fiber-optic communication systems. We considered
a 2000-km transmission line and found a fiber capacity of ∼5 bits/s/Hz. The method presented can be applied to different
transmission lines to assess the ultimate capacity achievable using advanced electronic and optical technologies.
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